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Model description

I Investigate simplified power system models, here the
SP-Model [1]:

Miθ̈i + Diθ̇i = PM,i −
∑
j
BijViVj sin

(
θi − θj

)
i ∈ VG

Diθ̇i = PL,i −
∑
j
BijViVj sin

(
θi − θj

)
i ∈ VL

(1)

I Synchronized if θ̇i = θ̇j∀i, j and the phase difference between
connected nodes is bounded.

I Sophisticated conditions for existence of synchronization
proposed in [2].
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Linearization and QEP

I Linearization of the full model around synchronized solution
leads to:

M̃θ̈ + Dθ̇ = P− Lθ (2)

I Can be solved by θ =
∑

j ψj exp
(
λjt
)
.

I Resulting in quadratic eigenvalue problem (QEP):(
λ2M̃ + λD+ L

)
ψ = 0 (3)
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Companion form and linearization

I To study the QEP, use a technique called linearization, leading
to the companion form.

I Using u = λv, we rewrite the QEP (3) as:

λ

(
C M
1 0

)
︸ ︷︷ ︸

:=A

(
v
u

)
︸︷︷︸
:=x

=

(
−K 0
0 1

)
︸ ︷︷ ︸

:=B

(
v
u

)
(4)

I Which is a GEP for the companion matrices (A,B).
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Clustering and previous results

I Dynamical behavior can be found by eigenvalues and
eigenvectors of the system.

I Nodes with identical eigenvector components for given
eigenvalue will have identical behavior in this mode.

I Clustering can be observed, related to coherency of
generators.

I For D = 0, studied in [3], main results:
I Load nodes (whereMi = 0) do not influence the dynamic
directly and their behavior is only affected by the neighboring
generator nodes.

I Strongly connected nodes show slow coherency in the fastest
modes (smallest eigenvalues).
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Example for clustering

λ 0.000 0.109 0.232 1.309 1.932 3.618
a 0.408 -0.460 0.198 0.758 -0.092 0.003
b 0.408 -0.563 0.322 -0.641 0.042 -0.001
c 0.408 0.336 0.089 0.063 0.837 -0.085
d 0.408 -0.137 -0.898 -0.074 -0.043 0.002
e 0.408 0.410 0.143 -0.048 -0.299 0.744
f 0.408 0.414 0.147 -0.058 -0.444 -0.663
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Computational studies

I Generalize results of [3], focus on clustering and coherency.
I Definition for cluster:

I The eigenvector components corresponding to the nodes of C
for a given mode are similar 1.

I The subgraph induced by C on G is connected.
I Investigate various topologies and parameter sets, in the
following consider IEEE 30 test case.

1x, y are similar iff |x − y| ≤
(
10−1 + 10−4 |y|

)
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Clustering with respect to mode
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Figure: Size of clusters with respect to mode for two different damping
values.
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Influence of damping coefficient
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Figure: Number and size of clusters for different damping coefficients.
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Influence of coupling coefficient
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Figure: Number and size of clusters with respect to coupling strength of
the network.
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Outlook - I

I Continuing investigating different IEEE and random graphs to
assess how the parameters and topology influence clustering
and dynamics.

I Investigate the nature and composition of clusters.
I Theoretical approach, based on [3], assess whether results are
extendable by eigenvalue perturbation of original problem.
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Outlook - II

I Secondment at IREC: Try to incorporate simple control model
in simplified power system model.

I Conditions to synchronize un-synchronized solutions.
I Influence of control on the stability of the synchronized
solution, as studied here.
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