

A new modelling approach for stabilisation of smart grids

Felix Koeth
G2Elab Grenoble

3rd INCITE Workshop EFACEC Porto, February 2017

Table of contents

- 1. Problem statement and model description
- 2. Quadratic eigenvalue problem and clustering
- 3. Numerical experiments
- 4. Outlook

Model description

► Investigate simplified power system models, here the SP-Model [1]:

$$\begin{split} M_{i}\ddot{\theta}_{i} + D_{i}\dot{\theta}_{i} &= P_{M,i} - \sum_{j} B_{ij}V_{i}V_{j}\sin\left(\theta_{i} - \theta_{j}\right) \quad i \in \mathcal{V}_{G} \\ D_{i}\dot{\theta}_{i} &= P_{L,i} - \sum_{j} B_{ij}V_{i}V_{j}\sin\left(\theta_{i} - \theta_{j}\right) \quad i \in \mathcal{V}_{L} \end{split} \tag{1}$$

- Synchronized if $\dot{\theta}_i = \dot{\theta}_j \forall i, j$ and the phase difference between connected nodes is bounded.
- Sophisticated conditions for existence of synchronization proposed in [2].

Linearization and QEP

Linearization of the full model around synchronized solution leads to:

$$\tilde{M}\ddot{\theta} + D\dot{\theta} = P - L\theta$$
 (2)

- ▶ Can be solved by $\theta = \sum_{j} \psi_{j} \exp(\lambda_{j} t)$.
- Resulting in quadratic eigenvalue problem (QEP):

$$\left(\lambda^2 \tilde{M} + \lambda D + L\right) \psi = 0 \tag{3}$$

Companion form and linearization

- ► To study the QEP, use a technique called linearization, leading to the companion form.
- ▶ Using $u = \lambda v$, we rewrite the QEP (3) as:

$$\lambda \underbrace{\begin{pmatrix} C & M \\ \mathbf{1} & \mathbf{0} \end{pmatrix}}_{:=A} \underbrace{\begin{pmatrix} v \\ u \end{pmatrix}}_{:=X} = \underbrace{\begin{pmatrix} -K & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}}_{:=B} \begin{pmatrix} v \\ u \end{pmatrix} \tag{4}$$

ightharpoonup Which is a GEP for the companion matrices (A,B).

Clustering and previous results

- Dynamical behavior can be found by eigenvalues and eigenvectors of the system.
- Nodes with identical eigenvector components for given eigenvalue will have identical behavior in this mode.
- Clustering can be observed, related to coherency of generators.
- For D = 0, studied in [3], main results:
 - Load nodes (where $M_i=0$) do not influence the dynamic directly and their behavior is only affected by the neighboring generator nodes.
 - Strongly connected nodes show slow coherency in the fastest modes (smallest eigenvalues).

Example for clustering

λ	0.000	0.109	0.232	1.309	1.932	3.618
		-0.460				
b	0.408	-0.563	0.322	-0.641	0.042	-0.001
C	0.408	0.336	0.089	0.063	0.837	-0.085
d	0.408	-0.137	-0.898	-0.074	-0.043	0.002
		0.410				
f	0.408	0.414	0.147	-0.058	-0.444	-0.663

Computational studies

- Generalize results of [3], focus on clustering and coherency.
- Definition for cluster:
 - ► The eigenvector components corresponding to the nodes of C for a given mode are similar ¹.
 - ▶ The subgraph induced by C on G is connected.
- ► Investigate various topologies and parameter sets, in the following consider IEEE 30 test case.

 $[|]x,y| = |x-y| \le (10^{-1} + 10^{-4} |y|)$

Clustering with respect to mode

Figure: Size of clusters with respect to mode for two different damping values.

Influence of damping coefficient

Figure: Number and size of clusters for different damping coefficients.

Influence of coupling coefficient

Figure: Number and size of clusters with respect to coupling strength of the network.

Outlook - I

- Continuing investigating different IEEE and random graphs to assess how the parameters and topology influence clustering and dynamics.
- Investigate the nature and composition of clusters.
- ► Theoretical approach, based on [3], assess whether results are extendable by eigenvalue perturbation of original problem.

Outlook - II

- Secondment at IREC: Try to incorporate simple control model in simplified power system model.
- Conditions to synchronize un-synchronized solutions.
- Influence of control on the stability of the synchronized solution, as studied here.

Bibliography I

- [1] Takashi Nishikawa and Adilson E Motter. "Comparative Analysis of Existing Models for Power-Grid Synchronization". In: New Journal of Physics 17.1 (Jan. 27, 2015), p. 015012.
- [2] F. Dorfler, M. Chertkov, and F. Bullo. "Synchronization in Complex Oscillator Networks and Smart Grids". In: Proceedings of the National Academy of Sciences 110.6 (Feb. 5, 2013), pp. 2005–2010.
- [3] Babak Ayazifar. "Graph Spectra and Modal Dynamics of Oscillatory Networks". Massachusetts Institute of Technology, 2002.

